1,394 research outputs found

    Characterisation of the transmissivity field of a fractured and karstic aquifer, Southern France

    Get PDF
    International audienceGeological and hydrological data collected at the Terrieu experimental site north of Montpellier, in a confined carbonate aquifer indicates that both fracture clusters and a major bedding plane form the main flow paths of this highly heterogeneous karst aquifer. However, characterising the geometry and spatial location of the main flow channels and estimating their flow properties remain difficult. These challenges can be addressed by solving an inverse problem using the available hydraulic head data recorded during a set of interference pumping tests.We first constructed a 2D equivalent porous medium model to represent the test site domain and then employed regular zoning parameterisation, on which the inverse modelling was performed. Because we aim to resolve the fine-scale characteristics of the transmissivity field, the problem undertaken is essentially a large-scale inverse model, i.e. the dimension of the unknown parameters is high. In order to deal with the high computational demands in such a large-scale inverse problem, a gradient-based, non-linear algorithm (SNOPT) was used to estimate the transmissivity field on the experimental site scale through the inversion of steady-state, hydraulic head measurements recorded at 22 boreholes during 8 sequential cross-hole pumping tests. We used the data from outcrops, borehole fracture measurements and interpretations of inter-well connectivities from interference test responses as initial models to trigger the inversion. Constraints for hydraulic conductivities, based on analytical interpretations of pumping tests, were also added to the inversion models. In addition, the efficiency of the adopted inverse algorithm enables us to increase dramatically the number of unknown parameters to investigate the influence of elementary discretisation on the reconstruction of the transmissivity fields in both synthetic and field studies.By following the above approach, transmissivity fields that produce similar hydrodynamic behaviours to the real head measurements were obtained. The inverted transmissivity fields show complex, spatial heterogeneities with highly conductive channels embedded in a low transmissivity matrix region. The spatial trend of the main flow channels is in a good agreement with that of the main fracture sets mapped on outcrops in the vicinity of the Terrieu site suggesting that the hydraulic anisotropy is consistent with the structural anisotropy. These results from the inverse modelling enable the main flow paths to be located and their hydrodynamic properties to be estimated

    MIG-10, an Adapter Protein, Interacts with ABI-1, a Component of Actin Polymerization Machinery

    Get PDF
    MIG-10 is a protein known to be involved in axon guidance and neuronal migration in early development in C. elegans. In an effort to better understand the protein\u27s function, this project used the yeast two hybrid system to screen a cDNA library (representing the entire C. elegans genome) for proteins with which MIG-10 interacts. The idea is if we can associate it with proteins of known function, we\u27ll have a better idea as to what MIG-10 itself does. Our research revealed that MIG-10 interacts with (among other proteins) ABI-1, which is a component of actin polymerization machinery

    Construction and Test of a Flux Modulation Superconducting Machine for Aircraft

    Get PDF
    International audienceThe increasing of drives towards More Electric Aircraft (MEA) or the development of electric propulsion aircraft calls for MW-class electrical machines with more compact and power dense designs. One way is to explore the use of superconducting materials to create a high magnetic field in order to reduce the mass of ferromagnetic components. This paper presents the construction and the test of a brushless axial flux superconducting machine. The brushless topology satisfies the aeronautics industry requirements in terms of maintenance, while the axial configuration ensures an optimal use of the anisotropic HTS tapes. The machine is classed as partially superconducting, only the inductor is made with superconducting materials. A special design concerning the use of a stationary cryostat is presented. This improvement reduces significantly the electromagnetic air-gap length. A 50kW prototype is manufactured with a minimal mass objective. The prototype constitutes a first step to a scale-up MW-class machine design

    Acoustically Targeted Chemogenetics for Noninvasive Control of Neural Circuits

    Get PDF
    Neurological and psychiatric disorders are often characterized by dysfunctional neural circuits in specific regions of the brain. Existing treatment strategies, including the use of drugs and implantable brain stimulators, aim to modulate the activity of these circuits. However, they are not cell-type-specific, lack spatial targeting or require invasive procedures. Here, we report a cell-type-specific and non-invasive approach based on acoustically targeted chemogenetics that enables the modulation of neural circuits with spatiotemporal specificity. The approach uses ultrasound waves to transiently open the blood–brain barrier and transduce neurons at specific locations in the brain with virally encoded engineered G-protein-coupled receptors. The engineered neurons subsequently respond to systemically administered designer compounds to activate or inhibit their activity. In a mouse model of memory formation, the approach can modify and subsequently activate or inhibit excitatory neurons within the hippocampus, with selective control over individual brain regions. This technology overcomes some of the key limitations associated with conventional brain therapies

    Picophytoplankton biomass distribution in the global ocean

    Get PDF
    The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s during cruises throughout most of the world ocean. We compiled a database of 40 946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1? spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins, and at least some data in all other basins. The average picophytoplankton biomass is 12 ± 22 µg Cl-1 or 1.9 g Cm-2. We estimate a total global picophytoplankton biomass of 0.53–1.32 Pg C (17–39% Prochlorococcus, 12–15% Synechococcus and 49–69% picoeukaryotes), with an intermediate/best estimate of 0.74 Pg C. Future efforts in this area of research should focus on reporting calibrated cell size and collecting data in undersampled regions

    Workspace and Singularity analysis of a Delta like family robot

    Get PDF
    Workspace and joint space analysis are essential steps in describing the task and designing the control loop of the robot, respectively. This paper presents the descriptive analysis of a family of delta-like parallel robots by using algebraic tools to induce an estimation about the complexity in representing the singularities in the workspace and the joint space. A Gr{\"o}bner based elimination is used to compute the singularities of the manipulator and a Cylindrical Algebraic Decomposition algorithm is used to study the workspace and the joint space. From these algebraic objects, we propose some certified three dimensional plotting describing the the shape of workspace and of the joint space which will help the engineers or researchers to decide the most suited configuration of the manipulator they should use for a given task. Also, the different parameters associated with the complexity of the serial and parallel singularities are tabulated, which further enhance the selection of the different configuration of the manipulator by comparing the complexity of the singularity equations.Comment: 4th IFTOMM International Symposium on Robotics and Mechatronics, Jun 2015, Poitiers, France. 201

    Prevalence and clinical significance of point of care elevated lactate at emergency admission in older patients: a prospective study.

    Get PDF
    Patients who are over 65 years old represent up to 24% of emergency department (ED) admissions. They are at increased risk of under-triage due to impaired physiological responses. The primary objective of this study was to assess the prevalence of elevated lactate by point of care testing (POCT) in this population. The secondary objective was to assess the additional value of lactate level in predicting an early poor outcome, as compared to and combined with common clinical scores and triage scales. This monocentric prospective study recruited ED patients who were over 65 years old between July 19th 2019 and June 17th 2020. Patients consulting for seizures or needing immediate assessment were excluded. POCT lactates were considered elevated if ≥ 2.5 mmol/L. A poor outcome was defined based on certain complications or therapeutic decisions. In total, 602 patients were included; 163 (27.1%) had elevated lactate and 44 (7.3%) had a poor outcome. There was no association between poor outcome and lactate level. Modified Early Warning Score (MEWS) was significantly associated with poor outcome, alongside National Early Warning Score (NEWS). Logistic regression also associated lactate level combined with MEWS and poor outcome. The prevalence of elevated lactate was 27.1%. Lactate level alone or combined with different triage scales or clinical scores such as MEWS, NEWS and qSOFA was not associated with prediction of a poor outcome. MEWS alone performed best in predicting poor outcome. The usefulness of POCT lactate measurement at triage is questionable in the population of 65 and above

    Stiffness modelling of parallelogram-based parallel manipulators

    Get PDF
    International audienceThe paper presents a methodology to enhance the stiffness analysis of parallel manipulators with parallelogram-based linkage. It directly takes into account the influence of the external loading and allows computing both the non-linear ``load-deflection" relation and relevant rank-deficient stiffness matrix. An equivalent bar-type pseudo-rigid model is also proposed to describe the parallelogram stiffness by means of five mutually coupled virtual springs. The contributions of this paper are highlighted with a parallelogram-type linkage used in a manipulator from the Orthoglide family

    Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

    Get PDF
    Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities

    Reading between Eye Saccades

    Get PDF
    Background: Skilled adult readers, in contrast to beginners, show no or little increase in reading latencies as a function of the number of letters in words up to seven letters. The information extraction strategy underlying such efficiency in word identification is still largely unknown, and methods that allow tracking of the letter information extraction through time between eye saccades are needed to fully address this question. Methodology/Principal Findings: The present study examined the use of letter information during reading, by means of the Bubbles technique. Ten participants each read 5,000 five-letter French words sampled in space-time within a 200 ms window. On the temporal dimension, our results show that two moments are especially important during the information extraction process. On the spatial dimension, we found a bias for the upper half of words. We also show for the first time that letter positions four, one, and three are particularly important for the identification of five-letter words. Conclusions/Significance: Our findings are consistent with either a partially parallel reading strategy or an optimal serial reading strategy. We show using computer simulations that this serial reading strategy predicts an absence of a wordlength effect for words from four- to seven letters in length. We believe that the Bubbles technique will play an importan
    corecore